

Regenerating Biochar for Sustainable Water Treatment

Description

Colloids and Surfaces A: Physicochemical and Engineering Aspects

Volume 705, Part 2, 20 January 2025, 135730

Efficient biochar regeneration for a circular economy: Removing emerging contaminants for sustainable water treatment

Oussama Baaloudj ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$, Serge Chiron ^b, Angelica Rebecca Zizzamia ^a, Vincenzo Trotta ^c, Daniele Del Buono ^d, Debora Puglia ^e, Marco Rallini ^e, Monica Brienza ^a $\stackrel{\triangle}{\sim}$

Show more ∨

https://doi.org/10.1016/j.colsurfa.2024.135730 7

Get rights and content 7

Full text access

A recent study published in *Colloids and Surfaces A: Physicochemical and Engineering Aspects* presents new findings on the use and regeneration of **biochar derived from forest residues** for the removal of emerging contaminants from water systems. Conducted within the framework of the **PRIMA-SAFE** project, the research focused on four common pollutants: **fipronil**, **venlafaxine**, **sulfamethoxazole**, and **trimethoprim**. These compounds are frequently found in wastewater and are recognized for their persistence and potential environmental impact.

Key Findings

- Biochar effectively adsorbed all target pollutants, reaching capacities of up to 3.88 mg/g.
- Heat-activated persulfate (PS+T) was the most efficient regeneration method, preserving high adsorption performance over five cycles

• Post-regeneration analyses confirmed the **structural stability and functional integrity** of the biochar, supporting its long-term usability.

Implications

This work demonstrates the feasibility of integrating **low-cost**, **renewable biochar** into sustainable water treatment practices. Its regeneration via PS+T represents a viable path to reduce waste, extend material lifespan, and contribute to a **circular economy** approach in environmental remediation.

Reference

Baaloudj O., Chiron S., Zizzamia A.R., Trotta V., Del Buono D., Puglia D., Rallini M., Brienza M. (2025). Efficient biochar regeneration for a circular economy: Removing emerging contaminants for sustainable water treatment.

Colloids and Surfaces A: Physicochemical and Engineering Aspects.

DOI: 10.1016/j.colsurfa.2024.135730

Category

1. Publication

Date Created 2025/05/27 **Author** writer